Inner Product between Two Tensors
This is an example of how to use the csdl inner function to compute the inner product between two tensors.
from csdl_om import Simulatorfrom csdl import Modelimport csdlimport numpy as np
class ExampleTensorTensor(Model):
def define(self):
m = 3 n = 4 p = 5
# Shape of the tensors ten_shape = (m, n, p)
# Number of elements in the tensors num_ten_elements = np.prod(ten_shape)
# Values for the two tensors ten1 = np.arange(num_ten_elements).reshape(ten_shape) ten2 = np.arange(num_ten_elements, 2 * num_ten_elements).reshape(ten_shape)
# Adding tensors to csdl ten1 = self.declare_variable('ten1', val=ten1) ten2 = self.declare_variable('ten2', val=ten2)
# Tensor-Tensor Inner Product specifying the first and last axes self.register_output( 'TenTenInner', csdl.inner(ten1, ten2, axes=([0, 2], [0, 2])), )
sim = Simulator(ExampleTensorTensor())sim.run()
print('ten1', sim['ten1'].shape)print(sim['ten1'])print('ten2', sim['ten2'].shape)print(sim['ten2'])print('TenTenInner', sim['TenTenInner'].shape)print(sim['TenTenInner'])
[[[ 0. 1. 2. 3. 4.] [ 5. 6. 7. 8. 9.] [10. 11. 12. 13. 14.] [15. 16. 17. 18. 19.]]
[[20. 21. 22. 23. 24.] [25. 26. 27. 28. 29.] [30. 31. 32. 33. 34.] [35. 36. 37. 38. 39.]]
[[40. 41. 42. 43. 44.] [45. 46. 47. 48. 49.] [50. 51. 52. 53. 54.] [55. 56. 57. 58. 59.]]]ten2 (3, 4, 5)[[[ 60. 61. 62. 63. 64.] [ 65. 66. 67. 68. 69.] [ 70. 71. 72. 73. 74.] [ 75. 76. 77. 78. 79.]]
[[ 80. 81. 82. 83. 84.] [ 85. 86. 87. 88. 89.] [ 90. 91. 92. 93. 94.] [ 95. 96. 97. 98. 99.]]
[[100. 101. 102. 103. 104.] [105. 106. 107. 108. 109.] [110. 111. 112. 113. 114.] [115. 116. 117. 118. 119.]]]TenTenInner (4, 4)[[31090. 32740. 34390. 36040.] [37240. 39265. 41290. 43315.] [43390. 45790. 48190. 50590.] [49540. 52315. 55090. 57865.]]